A Novel Image Processing Method for Visualizing the Vascular Pattern of Human Uterine Cérvix

  • Daniel A. Botero-Rosas Universidad de La Sabana
  • Cristhian J. Murcia Garzón Universidad Distrital Francisco José de Caldas
  • Laura M. Roa Barrantes Universidad Distrital Francisco José de Caldas
  • José M. Fuentes Clinical Laboratory for Prevention in Obstetrics and Gynecology (Previgin), Bogotá, Colombia.
  • Juan S. León-Ariza Mediciencias Research Group, Unicolciencias, Bogotá, Colombia.
Keywords: Colposcopy, Cervical Vascular Patterns, Digital Image Processing, Human Papilloma Virus, Uterine Cervical Cancer

Abstract

Cancer of the uterine cervix is a public health problem worldwide. Colposcopy is the commonest method employed to visualize human uterine cervix, and to diagnose uterine cervical cancer. When this structure is altered, colposcopy identifies and grades a number of characteristics of the lesions such as sizes, borders, shapes and vascular patterns. However, some drawbacks of the findings obtained by the classical colposcopic method are still unanswered. To improve the quality of the data obtained with colposcopy, selected images of human cervix were studied; further, a novel processing analysis was done using the top-hat and direct threshold methods. The analysis tree included selection of the image, elimination of frequency of oxyhemoglobin absorption, unsharped mask, treatment of specular highlights, filter approach and adjustment of intensity levels.We found that the top-hat method was superior that the direct threshold method to visualize the vascular pattern of human uterine cervix (93,1 % vs 85,1 %; p < 0,05). These findings were unrelated to the filter used. These results may help to increase the likelihood of detecting uterine cervical cancer of humans at earlier stages of the disease than known to date.

Downloads

Download data is not yet available.

References

Arbyn, M., Castellsague, X., de Sanjosé, S., Bruni, L., Saraiya, M., Bray, F., et al. (2008). Worldwide burden of cervical cancer in 2008. Ann Oncol 22:2675-2686.
https://doi.org/10.1093/annonc/mdr015
PMid:21471563

Bappa, L.A. & Yakasai, I.A. (2013). Colposcopy: the scientific basis. Ann Afr Med 12:86-89.
https://doi.org/10.4103/1596-3519.112396
PMid:23713014

Behtash, N. & Mehrdad, N. (2006). Cervical cancer: screening and prevention. Asian Pac J Cancer Prev 7: 683-686.
PMid:17250453

Bosze, P. & Syrjanen, K. (2010) Tissue-based classification of HPV infections of the uterine cervix and vagina (mucosal HPV infections). Eur J Gynaecol Oncol 31:605-611.
PMid:21319500

Clifford, G.M., Smith, J.S., Plummer, M., Munoz, N. & Franceschi. (2003). Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88:63-73.
https://doi.org/10.1038/sj.bjc.6600688
PMid:12556961 PMCid:PMC2376782

Coppleson, M., Dalrymple, J.C. & Atkinson, K.H. (1993). Colposcopic differentiation of abnormalities arising in the transformation zone. Obstet Gynecol Clin North Am 20:83-110.
PMid:8392678

Durdi, G.S., Sherigar, B.Y., Dalal, A.M., Desai, B.R. & Malur, P.R. (2009). Correlation of colposcopy using Reid colposcopic index with histopathology- a prospective study. J Turk Ger Gynecol Assoc 10:205-207.
PMid:24591873 PMCid:PMC3939166

Dvir, H., Gordon, S. & Greenspan, H. (2006) Illumination correction for content analysis in uterine cervix images. In: Proceedings Conference on Computer Vision Pattern Recognition Workshop (CVPRW'06), Tel-Aviv, Israel.
https://doi.org/10.1109/cvprw.2006.96

Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C. et al. (2014). Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 (Internet) Accessed September 14.

Franco, E.L., Duarte-Franco, E. & Ferenczy, A. (2001). Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ 164:1017-1025.
PMid:11314432 PMCid:PMC80931

Fusco, E., Padula, F., Mancini, E., Cavaliere, A. & Grubisic, G. (2008-1). History of colposcopy: a brief biography of Hinselmann. J Prenat Med 2:19-23.
PMid:22439022 PMCid:PMC3279084

Fusco, E., Padula, F., Mancini, E., Cavaliere, A., Grubisic, G. (2008-2). History of colposcopy: a brief biography of Hinselmann. J Prenat Med 2:19-23.
PMid:22439022 PMCid:PMC3279084

Guidi, A.J., Abu-Jawdeh, G., Berse, B., Jackman, R.W., Tognazzi, K., Dvorak, H.F. et al. (1995). Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 87:1237-1245.
https://doi.org/10.1093/jnci/87.16.1237
PMid:7563170

Kraatz, H. (1939). Farbfiltervorschaltung zur leichteren Erlernung der Kolposkopie. Zbl. Gynaek 63: 2307–2309.

Lee, Y.H. & Park, S.Y. (1990). A study of convex/concave edges and edge-enhancing operators based on the Laplacian. IEEE 37: 940-946.

Lehmann, T.M. & Palm, C. (2001). Color line search for illuminant estimation in real-world scenes. J Opt Soc Am A Opt Image Sci Vis 18:2679-2691.
https://doi.org/10.1364/JOSAA.18.002679
PMid:11688858

Lickrish, G.M. (2000). Colposcopy in the management of cervical intraepithelial neoplasia: Problems and suggestions. J Soc Obstet Gynaecol Can 22:429-434.
https://doi.org/10.1016/s0849-5831(16)31427-6

Massad, L.S., Einstein, M.H., Huh, W.K., Katki, H.A., Kinney, W.K., Schiffman, M. et al. (2013). Updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol 121:829-846.
https://doi.org/10.1097/AOG.0b013e3182883a34
PMid:23635684

Mateu-Aragonés, J.M. (1964). Importance of the vascular picture in colposcopic exploration. classification of the vascular images. Acta Gynaecol Obstet Hisp Lusit 13:231-252.
PMid:14245998

Mateu-Aragonés, J.M. (1969). Atypical lesions of the cervix epithelium. Clinical and histological study. Acta Obstet Ginecol Hisp Lusit: 1-52.
PMid:5370772

Mateu-Aragonés, J.M. (1979). Epidemiology of endometrial cancer I. Increase in its frequency. Acta Obstet Ginecol Hisp Lusit 27:515-522.
PMid:532558

Mehlhorn, G., Kage, A., Munzenmayer, C., Benz, M., Koch, M.C., Beckmann, M.W. et al. (2012). Computer-assisted diagnosis (CAD) in colposcopy: evaluation of a pilot study. Anticancer Res 32:5221-5226.
PMid:23225419

Munoz, N., Bosch, F.X., Castellsague, X., Diaz, M., Hammouda, D. et al. (2004). Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 111:278-285.
https://doi.org/10.1002/ijc.20244
PMid:15197783

Munoz, N., Bosch, F.X., Herrero, R., Castellsague, X., Shah, K.V. et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518-527.
https://doi.org/10.1056/NEJMoa021641
PMid:12571259

Nogueira-Rodrigues, A., Ferreira, C.G., Bergmann, A., Aguiar, de S.S., Thuler, L.C. (2014). Comparison of adenocarcinoma (ACA) and squamous cell carcinoma (SCC) of the uterine cervix in a suboptimally screened cohort: A population-based epidemiologic study of 51,842 women in Brazil. Gynecol Oncol: in press; doi: 10.1016/j.ygyno.2014.08.014.
https://doi.org/10.1016/j.ygyno.2014.08.014

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern B Cybern 9: 62-66.
https://doi.org/10.1109/TSMC.1979.4310076

Peirson,L., Fitzpatrick-Lewis, D., Ciliska, D. & Warren, R. (2013). Screening for cervical cancer: a systematic review and meta-analysis. Syst Rev 2:35. Reid, R., Stanhope, C.R., Herschman, B.R., Crum, C.P. & Agronow, S.J. (1984-1). Genital warts andcervical cancer IV. A colposcopic index for differentiating subclinical papillomaviral infection from cervical intraepithelial neoplasia. Am J Obstet Gynecol 149:815-823.

Reid, R., Stanhope, C.R., Herschman, B.R., Crum, C.P. & Agronow, S.J. (1984-1). Genital warts andcervical cancer IV. A colposcopic index for differentiating subclinical papillomaviral infection from cervical intraepithelial neoplasia. Am J Obstet Gynecol 149:815-823.

Reid, R., Herschman, B.R., Crum, C.P., Fu, Y.S., Braun, L., Shah, K.V. et al. (1984-2). Genital warts and cervical cancer. V. The tissue basis of colposcopic change. Am J Obstet Gynecol 149:293-303.
https://doi.org/10.1016/0002-9378(84)90229-1

Saslow, D., Solomon, D., Lawson, H.W., Killackey, M., Kulasingam, S.L. & Cain, J.M. (2012). American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J Low Genit Tract Dis 16:175-204.
https://doi.org/10.1097/LGT.0b013e31824ca9d5
PMid:22418039 PMCid:PMC3915715

Schiller, W. (1933). Early diagnosis of carcinoma of the cervix. Surg Gynecol Obstet 66: 210–220.

Shamir, L., Orlov, N., Mark-Eckley, D., Macura, T.J. & Goldberg, I.G. (2008). IICB 2008: A Proposed Benchmark Suite for Biological Image Analysis. Med Biol Eng Comput 46: 943–947.
https://doi.org/10.1007/s11517-008-0380-5
PMid:18668273 PMCid:PMC2562655

Srinivasan, Y., Corona, E., Nutter, B. & Mitra, S.B. (2009). A unified model-based image analysis framework for automated detection of precancerous lesions in digitized uterine cervix images. IEEE J Select Topics Signal Processing 3: 101-111.
https://doi.org/10.1109/JSTSP.2008.2011102

Srinivasan, Y., Yang, S., Nutter, B., Mitra, S., Phillips, B. & Long, R. (2007). Challenges in automated detection of cervical intraepithelial neoplasia. Proc SPIE 6514, 65140F.
https://doi.org/10.1117/12.710051

Tomazevic, D., Likar, B. & Pernus, F. (2002). Comparative evaluation of retrospective shading correction methods. J Microsc 208:212-223.
https://doi.org/10.1046/j.1365-2818.2002.01079.x
PMid:12460452

Vizcaino, A.P., Moreno, V., Bosch, F.X., Munoz, N., Barros-Dios, X.M., Parkin, D.M. (1998). International trends in the incidence of cervical cancer: I. Adenocarcinoma and adenosquamous cell carcinomas. Int J Cancer 75:536-545.
https://doi.org/10.1002/(SICI)1097-0215(19980209)75:4<536::AID-IJC8>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0215(19980209)75:4<536::AID-IJC8>3.3.CO;2-E

Vlachokosta, A.A., Asvestas, P.A., Gkrozou, F., Lavasidis, L., Matsopoulos, G.K. & Paschopoulos, M. (2013). Classification of hysteroscopical images using texture and vessel descriptors. Med Biol Eng Comput. 51:859-67.
https://doi.org/10.1007/s11517-013-1058-1
PMid:23504345

Wang, S.S., Sherman, M.E., Hildesheim, A., Lacey, J.V. & Devesa, S. (2004). Cervical adenocarcin and squamous cell carcinoma incidence trends among white women and black women in the United States for 1976-2000. Cancer 100:1035-1044.
https://doi.org/10.1002/cncr.20064
PMid:14983500

Xue, Z., Antani, S., Rodney, L.R.; Jeronimo, J. & Thoma, G.R. (2007-1). Comparative Performance Analysis of Cervix ROI Extraction and Specular Reflection Removal Algorithms for Uterine Cervix Image Analysis. Proc SPIE 6512: 65124I-1-9.

Xue, Z., Antani, S., Long, L.R., Jeronimo, J. & Thoma, G.R. (2007-2). Investigating CBIR techniques for cervicographic images. AMIA Annu Symp Proc 826-830.

Xue, Z., Long, L.R., Antani, S., Neve, L., Zhu, Y. & Thoma, G.R. (2010). A unified set of analysis tools for uterine cervix image segmentation. Comput Med Imaging Graph 34:593-604.
https://doi.org/10.1016/j.compmedimag.2010.04.002
PMid:20510585 PMCid:PMC2955170

Zhu, Y., Huang, X., Wang, W., Lopresti, D., Long, G.R. & Antani, S. (2008). Balancing the Role of Priors in Multi-Observer Segmentation Evaluation. J Signal Process Syst 55:185-207.
https://doi.org/10.1007/s11265-008-0215-5
PMid:20523759 PMCid:PMC2879662

Zijlstra, W.G., Buursma, A., Meeuwsen-van der Roest, W.P. (1991). Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem 37:1633-1638.
PMid:1716537

Zimmerman-Moreno, G. & Greenspan, H. (2006). Automatic detection of specular reflections in uterine cervix images. Proc. SPIE 61446E.
https://doi.org/10.1117/12.653089

Zur, H.H. (1982). Human genital cancer: synergism between two virus infections or synergism between a virus infection and initiating events? Lancet 2:1370-1372.
Published
2017-01-30
How to Cite
Botero-Rosas, D. A., Murcia Garzón, C. J., Roa Barrantes, L. M., Fuentes, J. M., & León-Ariza, J. S. (2017, January 30). A Novel Image Processing Method for Visualizing the Vascular Pattern of Human Uterine Cérvix. Revista Científica General José María Córdova, 15(19), 291-306. https://doi.org/10.21830/19006586.77
Section
Technoscience