Study of Native Dyes in Solar Cell Applications

  • Paula Aschenbrenner Universität Leipzig.
  • Simon Hertlein Ludwig-Maximilians-Universität.
  • Carlos Villanueva Universidad Industrial de Santander.
  • Tomás Rada Universidad del Norte.
Keywords: natural dyes, solar cell, TiO2

Abstract

Due to the high solar radiation, constant over the whole year, solar energy is one of the most promising energy sources of the Caribbean for the next decades. But up to now this potential is not used, mainly due to the high costs of solar cells. Solar energy conversion is mainly dominated by expensive cells based on silicon. A promising alternative is the dye sensitized solar cell (DSSC) based on Titanium dioxide (TiO2), which has generated considerable interest in the last years. Thus, the objective of this study was to analyse and optimize the DSSCs’ performance depending on their preparation and lighting condition. Therefore, five different natural dyes were extracted from local Colombian fruits and vegetables, such as Achiote, Agraz, Corozo, Mora and Remolacha. They were characterized using an UV-Spectrophotometer and used as sensitizers to fabricate the DSSCs. To optimize the DSSCs, different conditions and parameters were changed. It was thereby found that beside the fruit that was used, also the thickness of the TiO2 layer and the preparation procedure of the dye solution have a direct impact on the cell efficiency. The cells fabricated with achiote dye solution were found to have the best efficiency, reaching up to 0,21% under sun and 0,075% under a halogen lamp. The study was executed in the context of internships at the Universidad del Norte in Barranquilla, Colombia, which was enabled by the DAAD through RISE program scholarships.

Downloads

Download data is not yet available.

Author Biographies

Paula Aschenbrenner, Universität Leipzig.

BSc Física, Universität Leipzig, Alemania. Prácticas en la Universidad del Norte, 2015. Patrocinado por el Programa RISE del DAAD.

Simon Hertlein, Ludwig-Maximilians-Universität.

Licenciado en Ciencias en Física, Ludwig-Maximilians-Universität, München, Alemania. Prácticas en la Universidad del Norte, 2016. Patrocinado por el Programa RISE del DAAD

Carlos Villanueva, Universidad Industrial de Santander.

Ingeniero Electrónico, Universidad Industrial de Santander, Bucaramanga, Colombia; MSc. (C) en Tecnologías Urbanas Sostenibles, Universidad de Buenos Aires, Argentina. Investigador invitado.

Tomás Rada, Universidad del Norte.

Doctor en Física, Universidad de Saint Andrews, Reino Unido. Posdoctorado en el HelmholtzZentrum de Berlín, Alemania. Jefe del Departamento de Física y Geociencias de la Universidad del Norte.

References

Abrams N. (2005). Efficiency enhancement in dye-sensitized solar Cells through light manipulation (PhD thesis). The Pennsylvania State University.

Bell Labs. (1954/2009). April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell. APS News. American Physical Society, 18 (4). Retrieved from https://www.aps.org/publications/apsnews/200904/physicshistory.cfm

Bruton, T., Luthard, G., Rasch, K.-D., Roy, K., Dorrity, I., Garrard, B., Teale, L., Alonso, J., Ugalde, U., Declerq, K., Nijs, J., Szlufcik, J., Rauber, A., Wettling, W., & Vallera, A. (1997). In a study on the manufacture at 500mwp p.a. of crystalline silicon photovoltaic modules [Technical report]. 14th European Photovoltaic Solar Energy Conference, Barcelona.

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499 (7458), 316-319.
https://doi.org/10.1038/nature12340
PMid:23842493

Dittrich, T. (2015). Materials Concepts for Solar Cells. London: Imperial College Press, Helmholtz Center Berlin for Materials and Energy.

Friedrich D. (2011). A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells (PhD thesis). Helmholtz Zentrum Berlin.

Graetzel, M. (2005). Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 44, 6841–6851.
https://doi.org/10.1021/ic0508371
PMid:16180840

Green, M. A. (2006). Recent developments and future prospects for third generation and other advanced cells. In IEEE 4th World Conference on Photovoltaic Energy Conference (Vol. 1, pp. 15-19). IEEE.
https://doi.org/10.1109/wcpec.2006.279336

Hernandez Perez, M. I., Lobo Arias M., Medina Cano, C.I., & Cartagena Valenzuela, J. R. (2012). Andean blueberry (vaccinium meridionale swartz) seed storage behavior characterization under low temperature conservation. Revista Facultad Nacional de Agronomía (Medellín), 65, 6627-6635.

Kalyanasudaram, K. (2010). Dye-Sensitized Solar Cells. Lausanne. EPFL Press.

Karlsson, K. M. (2011). Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar Cells (PhD thesis). KTH Royal Institute of Technology.

Khan, M. I. (2013). A Study on the Optimization of Dye-Sensitized Solar Cells (PhD thesis). University of South Florida.

Lewis N. S. & Crabtree G. (2005). Basic Research Needs for Solar Energy Utilization. Washington, D. C.: Office of Sciene, U.S. Department of Energy.

Medina-Flores D., Ulloa-Urizar G., Camere-Colarossi R., Caballero-García S., Mayta-Tovalino F., & del Valle-Mendoza J. (2016). Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. In Science Direct (pp. 400-403). Hainan Medical University.
https://doi.org/10.1016/j.apjtb.2016.03.005

O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740.
https://doi.org/10.1038/353737a0

Osorio C., Carriazo J. G., & Almanza, O. (2011). Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy. European Food Research and Technology, 233, 103-108.
https://doi.org/10.1007/s00217-011-1499-4

Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. J. Appl. Phys, 32, 510.
https://doi.org/10.1063/1.1736034

Solaronix. (2013). Supplier of specialty chemicals and materials. Materials specification. Aubonne, Switzerland.

Young, C. (2013). Organic Solar Energy and Berries. Laboratory Guidelines. Houston, USA: National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs, University of Houston.
https://doi.org/10.1115/1.4024983
https://doi.org/10.1016/j.solener.2013.08.033
https://doi.org/10.1016/j.solener.2013.09.027
https://doi.org/10.1016/j.solener.2013.10.028
https://doi.org/10.1115/1.4023876

Zhang D., Lanier S., Downing J., Avent, J., Lum, J., & McHale, J. L. (2008). Betalain pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A-chemistry, 195, (1), 72-80.
https://doi.org/10.1016/j.jphotochem.2007.07.038
Published
2017-07-30
How to Cite
Aschenbrenner, P., Hertlein, S., Villanueva, C., & Rada, T. (2017, July 30). Study of Native Dyes in Solar Cell Applications. Revista Científica General José María Córdova, 15(20), 271-289. https://doi.org/10.21830/19006586.172
Section
Reviews